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Abstract
Omega squared (v̂2) is a measure of effect size for analysis of variance (ANOVA) designs. It is less biased
than eta squared, but reported less often. This is in part due to lack of clear guidance on how to calculate it. In
this paper, we discuss the logic behind effect size measures, the problem with eta squared, the history of
omega squared, and why it has been underused. We then provide a user-friendly guide to omega squared
and partial omega squared for ANOVA designs with fixed factors, including one-way, two-way, and
three-way designs, using within-subjects factors and/or between-subjects factors. We show how to calculate
omega squared using output from SPSS. We provide information on the calculation of confidence intervals.
We examine the problems of nonadditivity, and intrinsic versus extrinsic factors. We argue that statistical
package developers could play an important role in making the calculation of omega squared easier.
Finally, we recommend that researchers report the formulas used in calculating effect sizes, include confi-
dence intervals if possible, and include ANOVA tables in the online supplemental materials of their work.

Translational Abstract
In the psychological sciences, researchers often compare groups of people through the analysis of variance
(ANOVA). When reporting the results of such analyses, researchers should include measures of effect size,
which indicate the size and practical significance of the results. Most researchers use a measure called eta
squared, but it overestimates the true effect size. Omega squared is a less-biased alternative, but it is used
less often. This is in part due to lack of clear guidance on how to calculate it. In this paper, we explain
the logic behind effect size measures, the problem with eta squared, the history of omega squared, and
why it has been underused. The paper includes a user-friendly guide with omega-squared formulas for var-
ious ANOVA-designs, examples using SPSS output, discussion of obstacles, and instructions on how to cal-
culate confidence intervals using R when possible. We recommend that researchers use this guide to
calculate and report omega squared, report the exact formulas they used, and include ANOVA tables in
the online supplemental materials of their work.

Keywords: omega squared, partial omega squared, effect size, ANOVA

Supplemental materials: https://doi.org/10.1037/met0000581.supp

Comparison of means is a common analysis in psychological sci-
ence. For example, researchers often want to compare performance
(dependent variable) across different groups of people or different
conditions of a treatment (independent variable). Analysis of vari-
ance (ANOVA) is the inferential statistical test for comparing
means across three or more groups/conditions, and/or for comparing
means across two or more independent variables. The F-test statistic
and p-value from an ANOVA indicate the statistical significance of

the test—that is, the probability of obtaining these differences in
means just due to chance. However, it is crucially important for
researchers to also report a measure of effect size, which tells us
not just whether there was likely a difference in means at all, but
how large that difference was, or how strongly an independent var-
iable affected the dependent variable (American Psychological
Association [APA], 2020; Keppel & Wickens, 2004; Thompson,
1999a; Wilkinson, 1999).
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Effect sizes are also important for meta-analysis, in which treat-
ment effects are compared across studies (Thompson, 1999a), and
for calculating sample size required to obtain certain levels of
power (Keppel & Wickens, 2004).
A commonly usedmeasure of effect size for ANOVA is eta squared

(η2) or partial eta squared (h2
p). Eta squared estimates the amount of

variance in the dependent variable that is accounted for by one or
more independent variables. However, eta squared is problematic
because it is biased: it tends to overestimate the true effect size in a
population. Many authors have pointed out this flaw and have advised
alternatives (e.g., Albers & Lakens, 2018; Field, 2017; Lakens, 2015;
Okada, 2013; Olejnik & Algina, 2000; Tabachnick & Fidell, 2007;
Yigit & Mendes, 2018). The foremost alternative measures of effect
size are omega squared (v̂2) and partial omega squared (v̂2

p), which
were first proposed over 50 years ago (Hays, 1963). Omega squared
is much less biased than eta squared, and thus is a superior measure.
However, it is still rarely used (Alhija & Levy, 2009; Zhou &
Skidmore, 2017). The goal of this paper is to help remedy that by pro-
viding user friendly explanations and instructions.1

In this paper, wewill explain the logic of eta and omega squared, and
the shortcomings of eta squared. We will give a brief history of omega
squared, and wewill discuss the reasons we believe it is still underused.
Most helpfully, we will provide formulas to calculate omega squared
for the most commonly used ANOVA designs in the behavioral and
social sciences, up to three-way ANOVAs. We will explain how to
use these formulas with output from SPSS. Wewill conclude with rec-
ommendations on how to calculate and report omega squared.

Clarifying Our Scope and Terminology

Let us first clarify some terminology, and define the scope of what
we will and will not cover.

Variables

Variables (aka factors) are characteristics that vary across entities.
In experiments, an independent variable is one that is manipulated
by the researcher (i.e., they determine the possible values and assign
participants to those values) and a dependent variable is one that is
simply measured by the researcher. Common inferential statistical
tests such as t-test and ANOVA are used to see if an independent var-
iable(s) has an effect on the dependent variable. ANOVA may also
be used for nonexperimental data, in which case the variables may
be referred to as predictor variable and outcome variable, rather
than independent variable and dependent variable, respectively.
For convenience, we will simply use the terms independent variable
(IV) and dependent variable (DV). We will also use the term treat-
ment as a synonym for IV. As for labeling, the outcome or dependent
variable is typically labeled as Y. The predictor or independent var-
iable may often be labeled as X, though we will use the label A
instead of X in order to be consistent with many of our sources.
The words variable and factor are synonyms, and the latter is often
used to refer to IVs in ANOVA; we will use the words variable
and factor interchangeably in this paper.

Analysis of Variance

ANOVA is a statistical test (aka model) of the relationship
between one or more categorical independent variables and one con-
tinuous dependent variable. A categorical variable has values that

are treated as named categories without inherent order or numeric
value, and can have two or more such categories; a continuous var-
iable has numeric values and may be of interval or ratio scale of mea-
surement.2 The purpose of ANOVA is to compare means across three
or more groups/conditions. The variances of the groups/conditions
are simply a tool toward that end, and are not actually themselves
the subject of analysis. An ANOVA produces an ANOVA summary
table, which contains the outcome(s) of the test(s) for statistical sig-
nificance, as well as the components needed for calculating effect
size. The terms one-way, two-way, and three-way refer to the num-
ber of independent variables in the design.

Statistical Significance

When conducting statistical analyses, we choose a significance
level, represented by α (alpha). This value represents the probability
of rejecting the null hypothesis while it is in fact true. Traditionally,
this value is set at .05 or .01. When carrying out statistical analyses
we calculate a p-value. This value is the probability of getting the
obtained result (or a more extreme value) while the null hypothesis
is true. When the p-value is equal to or lower than the significance
level α, we reject the null hypothesis. When the p-value exceeds
α, it cannot be ruled out that the found effect is due to chance
(Kirk, 1996). Reporting the p-value is a longstanding and important
tradition in the social and behavioral sciences (APA, 2020).

Effect Size

Effect size is a measure that estimates the strength of the investi-
gated effects of the IV(s). Whereas statistical significance only indi-
cates whether an effect is present, effect sizes describe the
quantitative size of the effect (Fritz et al., 2012). Effect sizes help
us understand the expected impact of a treatment or condition.
Thus, an effect size gives an indication whether an effect is meaning-
ful in the real world, and is therefore called practical significance
(Ellis, 2010; Kirk, 1996). While statistical significance is dependent
on sample size, effect sizes are not; they should be comparable
across studies, regardless of sample size (Levine & Hullett, 2002).
A large effect that is not significant indicates that greater power
may be needed, while a very small significant effect cautions against
overvaluing the effect (Fritz et al., 2012).

Between-Subjects, Within-Subjects, and Split-Plot Designs

These distinctions have to do with how an independent variable(s)
is manipulated. For an IV that is manipulated between-subjects (aka
independent samples), each participant experiences only one value
of the IV, and thus the comparison of DVmeans is made between dif-
ferent groups of participants. For an IV that is manipulated within-
subjects (aka repeated measures), each participant experiences all

1 Seasoned researchers may note how painstakingly we describe and
explain basic concepts in this paper. We have deliberately chosen to do
this, as we found that most of the previous articles on omega squared assume
a good deal of specific prior knowledge, and are difficult to decipher for non-
statisticians. That may be one of the obstacles to more widespread use of
omega squared. Another obstacle is that a number of the sources we have
scoured are out-of-print textbooks. We wish to remove such obstacles.

2 It is also possible to use ANOVAwith a Likert-scale DV (Norman, 2010)
or a dichotomous DV (Lunney, 1970).
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values of the IV, and thus the comparison ofDVmeans ismadewithin
that one group of participants such that each participant’s score in one
condition is compared to their scores in the other conditions. By con-
vention, the values of a between-subjects IV are often called groups,
and the values of a within-subjects IV are often called conditions. The
term levelsmay also be used in either design. In this paper, wewill use
the term groups/conditions to refer generally to values of an IV. Note
also that the terms participant and subject are synonyms.
A one-way ANOVA has only one IV and will be either between-

subjects or within-subjects. For two-way ANOVAs and higher, a
split–plot design is one in which there is at least one between-
subjects IV and at least one within-subjects IV. The name originates
from agricultural research, where experiments were conducted on
different plots and subplots of land (Goos, 2010). Some authors
have referred to this model as a mixed design, as it is a mix of within-
subjects and between-subjects factors (Gaebelein & Soderquist,
1978; Keppel &Wickens, 2004). However, this can be quite confus-
ing, as the term “mixed” has different meanings in other contexts,
such as a “mixed effects model” (aka mixed model, linear mixed
model, multilevel model, ANOVA Model III) which is one that
includes both fixed factors and random factors, or “mixed methods
research” (aka mixed research) which combines qualitative and
quantitative methods. Thus, in this paper, we use the term split–
plot to avoid confusion. Note that the distinction of between-subjects
versus within-subjects is unrelated to the distinction of fixed effects
versus random effects, which we will discuss next.3

Fixed Effects Versus Random Effects (aka Fixed Factors
vs. Random Factors)

This distinction has to do with how the conditions of an indepen-
dent variable are chosen. A fixed effect is when the researcher chooses
a fixed set of conditions for an IV. A random effect is when the
researcher randomly samples conditions from a range of possible
values, so that the conditions used may vary across experiments.4

The distinction is important for several reasons. First, the conclu-
sions from an experiment using fixed effects should be limited to just
those conditions that were used, whereas the conclusions based on
random effects can be broader. Second, the expected mean squares,
and thus the appropriate error terms, differ for fixed versus random
effects. This is why there are three different overall ANOVAmodels.
ANOVA Model I is for designs including only fixed effects,
ANOVA Model II is for designs including only random effects,
and ANOVA Model III is for designs including both fixed and ran-
dom effects. The way that omega squared is calculated differs across
these three models. The most common scenario in psychology
research is an experiment using only fixed effects (i.e., ANOVA
Model I). Thus, we will limit the scope of this paper to only fixed
effect IVs (aka fixed factors). If you want to know about calculating
omega squared for designs that include random effects consult Dodd
and Schultz (1973), Olejnik and Algina (2000), and Vaughan and
Corballis (1969). Alternatively, the intraclass correlation coefficient
(ICC or r̂2) has been recommended for designs that include random
effects (Kirk, 2013; Maxwell et al., 1981).

Summary of Scope

In this paper, wewill address between-subjects, within-subjects, and
split–plot designs, up to three-way ANOVAs, for fixed factors only.

Logic of ANOVA Effect Size Measures

In order to understand the logic of effect size measures for
ANOVA, including omega squared, we must first consider the larger
context. When we measure a group of people’s performance on
some task, their scores will vary from each other. The job of psycho-
logical science is to understand why that variance happens, to
“account for” the variance.5

Let us use Y to represent a variable we have measured, for exam-
ple, performance on a memory test for a list of words. In the context
of an experiment, we call this the dependent variable. If we have no
other information about the Y scores—that is, we know nothing
about any other variables—then all we can do is describe the vari-
ance of those scores. We cannot explain any of it. Every possible
conceivable other variables in the world could be influencing the
spread of those Y scores.

But suppose that we do havemore information about thoseY scores.
Suppose we know the value of another variable, let us call it A, that
goes along with each Y score. In fact, the reason we know the Avalues
in this example is because we randomly assigned people to three dif-
ferent conditions of A (e.g., short, medium, and long amount of time to
study the list) before we measured Y. That is, we ran a between-
subjects experiment and A was the independent variable.

An inferential statistical test, in this case, a one-way between-
subjects ANOVA, would tell us the extent to which we might
want to believe that there is truly any effect at all of variable A on
variable Y. If the ANOVA tells us that p, .05, the effect of A on
Y is statistically significant. But the statistical significance does
not tell us how big the effect of A on Y is (i.e., the effect size).
For that, we must see how much of the variance in Y may be attrib-
utable to A. That is, howmuch of a role did study time (A) play in the
variance of peoples’ memory test performance (Y )?

To do so, we must partition the total variance into two different
components. The first component is the variance in Y attributable
to A, which might be called between-groups variance, or treatment
effect. The second component is all the remaining leftover variance
in Y, which could be due to any other variables in the world (aka
extraneous variables). This component is often called error variance.
The word error does not mean mistake. It means the unexplained
deviation of a Y score from what we would have predicted it to
be, based on the overall mean of Y and the mean of the relevant A
condition. Error variance is simply variance in Y that is due to var-
iables that are not included in our statistical model.

We quantify variance components by calculating several different
sums of squared deviations. SStotal is the sum of squared deviations
of all Y scores from the grand mean (i.e., the overall mean of all Y
scores, disregarding any other variable). This represents the total var-
iability of all the Y scores:

SStotal =
∑

j

∑

i

(Yij −M)2. (1)

3 The encyclopedia entry Mixed Model Design (Kraska, 2010) confuses
these two uses of the word “mixed.”

4 More explanation of fixed versus random effects can be found in the fol-
lowing textbooks: Keppel and Wickens (2004, pp. 533–549) and Myers and
Well (2010, p. 335).

5 For a further discussion of what “accounting for variance” means, see
Sechrest and Yeaton (1982).
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In the above formula, Σmeans summation, j indicates a particular
group/condition of the independent variable (A), i indicates a partic-
ular participant, Yij is the dependent variable score of participant i in
group/condition j, and M is the grand mean.
SStotal can be partitioned into two components: SSbetween

and SSwithin. SSbetween (also called SSeffect or SStreatment) is the
between-groups variance component, which tells us how much of
the variance in Y is due to A. It is quantified by calculating how
much the group means (e.g., mean test performance for the short,
medium, and long study time groups) vary around the grand mean:

SSbetween =
∑

j

nj(Mj −M)2. (2)

In the above formula, nj is the number of participants in group/
condition j, and Mj is the mean of group/condition j.
SSwithin (also called SSerror) is the leftover variability, which is our

best estimate of the influence of all other conceivable variables on Y.
It is quantified by the sum of squared deviations of individual Y
scores from their respective group means:

SSwithin =
∑

j

∑

i

(Yij −Mj)
2. (3)

This formula is very similar to the SStotal formula, except that we
are comparing each participant’s score to their respective group/
condition mean, instead of the grand mean. Adding SSbetween and
SSwithin gives us SStotal. That is, SStotal consists of two components:
SSbetween and SSwithin. Keep in mind, this is for a one-way between-
subjects ANOVA.
Now that we have partitioned the variance, we can see how much

of the total variance is due to a particular component. That is, effect
size. Let us start by using the eta-squared measure of effect size. Eta
squared gives an intuitive use of the partitioned variance:

h2 = SSbetween
SStotal

. (4)

Eta squared expresses the between-groups variance as a propor-
tion of the total variance, telling us how much of the variance in
dependent variable Y can be attributed to independent variable A.
For example, how big of a role did study time play in performance
on our memory test? Eta squared can be thought of conceptually
as either the proportion of variance accounted for, or as a propor-
tional reduction in error/uncertainty. As a proportion, its possible
values range from 0 to 1. So, for example, a value of .50 would
mean that independent variable A accounts for 50% of the variance
in dependent variable Y. This makes sense, and eta squared works
well as a descriptive statistic of our sample data. However, there
are problems with eta squared.

What Is Wrong With Eta Squared?

In reporting on ANOVA, eta squared and partial eta squared are
the most popular effect sizes (Peng et al., 2013; Zhou &
Skidmore, 2017). It has become common practice in statistics to
use Greek letters to indicate a population parameter (APA, 2020;
Keppel & Wickens, 2004). This might give the impression that eta
squared (η2) is an estimator for the effect size in the population.
This however, is not the case. Eta squared is simply a descriptive sta-
tistic of the sample data (Lakens, 2013; Maxwell et al., 2018;

Tabachnick & Fidell, 2007).6 If we want to make inferences to the
broader population of people (i.e., everyone not in our sample),
eta squared is flawed. This is why eta squared is also known as R2

or the correlation ratio in the context of regression (Keppel &
Wickens, 2004).

To understand the problem with eta squared, let us remind our-
selves about the difference between population and sample. In psy-
chology research, the population is the hypothetical set of all
possible participants of interest (e.g., all humans, past, present, and
future), whereas the sample is a single finite set of participants
drawn from that population. Descriptive statistics merely describe
our sample data. Inferential statistics draw conclusions about the pop-
ulation from the sample.

Some sample statistics, such as the mean, are unbiased estimators
of their corresponding population parameters, meaning that the
expected valued of the sample mean in the long run is equal to the
population mean. That is, if we were to endlessly draw new samples
from the population, calculate the sample mean each time, and build
a sampling distribution out of those means, the mean of that sam-
pling distribution would be equal to the population mean.

However, some sample statistics are biased estimators, such as the
variance. The expected value of the sample variance is smaller than
the actual population variance. An adjustment is necessary to make
an unbiased estimate of the population variance. That adjustment is
Bessel’s correction, which uses n − 1 in the denominator of the var-
iance formula, instead of n. This adjusted version of the sample var-
iance is often denoted as s2.

Eta squared is a ratio of sums of squares calculated from the sample
data (SSbetween/SStotal). Just as the unadjusted sample variance is a
biased estimator of the population variance, an unadjusted measure
based on sample sums of squares will also be a biased estimator of
the population value. In this case, eta squared tends to overestimate
the true effect size, especiallywhen it is calculated from small samples.
The reason for this flaw is that the numerator, SSbetween, consists of var-
iance due to the factor, as well as some random variance in the means
of the groups of that factor. This is due to sampling error. Even when
the population groupmeans do not differ, the sample groupmeans will
always differ somewhat. This is due to the random chance involved in
sampling participants from the population (Ellis, 2010; Maxwell et al.,
2018; Myers & Well, 2003). In eta squared, these coincidental differ-
ences between sample groups are treated as systematic (Keppel &
Wickens, 2004). Treating coincidental differences as systematic results
in positive bias, meaning it will overestimate the effect, especially with
small sample sizes (Albers&Lakens, 2018; Keppel &Wickens, 2004;
Lakens, 2015) and even more so for partial eta squared (Levine &
Hullett, 2002). Simultaneously, as the explained variance due to the
factor is overestimated (numerator), the unexplained variance is under-
estimated (denominator, Maxwell et al., 2018). Multiple studies using
Monte Carlo simulations have shown the extent of the positive bias
that occurs in eta squared and partial eta squared (Keselman, 1975;
Okada, 2013; Yigit & Mendes, 2018). Recently, Liu (2022) proposed
a bootstrapping method to correct for bias in eta squared. This method
requires some proficiency with the program R. Importantly, this
method is only suitable for one-way between-subjects ANOVAs and
not for other designs. The positive bias in eta squared and partial eta

6 The persistent misleading use of the Greek letter eta is probably a result of
the notation used by SPSS.
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squared is problematic as it can lead to overvaluing effects, as well as
underpowering subsequent studies. In a 2015 blogpost, statistician
Daniël Lakens wrote: “If η2 was a flight from New York to
Amsterdam, you would end up in Berlin.” Although that may be a
bit of an overstatement (Albers, 2015), the bias in eta squared should
motivate researchers to choose a better measure of effect size, namely
omega squared.

Development/History of Omega Squared

The origins of the effect size omega squared are somewhat
murky. We can broadly think of most effect size measures as
belonging to one of two families: standardized differences (such as
Cohen’s d), and associative strength (such as Pearson’s r; Ellis,
2010, pp. 6–15). The ANOVA effect sizes belong to the latter.
Using Google Books Ngram Viewer and the PsychINFO database,
we conclude that the standard version of omega squared was intro-
duced by Hays (1963) in the first edition of his well-regarded
graduate-level statistics textbook (pp. 323–332, especially pp. 381–
384). Several other sources also point to Hays (1963) as the origin
(Dwyer, 1974; Keren & Lewis, 1979; Sechrest & Yeaton, 1982).7

However, there were several precursors to omega squared that have
been mentioned in histories by other authors (Dwyer, 1974; Glass &
Hakstian, 1969; Huberty, 2002; Keren & Lewis, 1979). Examining
these precursors can help readers in understanding effect sizes in
general and omega squared specifically. It is unclear whether Hays
knew of these precursors, as he did not cite anythingwhen introducing
omega squared, and simply justified his use of the omega symbol by
referring to it as a “relatively neutral symbol,” presumably meaning
one that had not already been used very much for other measures.
The general idea of quantifying the strength of association dates

back to at least Pearson (1905)8 who defined and labeled eta as the cor-
relation ratio. Eta squared was introduced for regression by Pearson
(1911), and for ANOVA by Fisher (1925, 1928). As stated before,
the squared correlation ratio, η2 (SSbetween/SStotal), is synonymous
with R2 (aka r2= 1− SSresidual

SStotal
), which is often called the coefficient

of determination. The term R2 is used in the context of regression,
whereas η2 is used in the context of ANOVA. To the best of our
knowledge, omega squared is not used in regression analysis.
Several measures descended from eta squared. Bolles and Messick

(1958) proposed a utility index or coefficient of utility, U, which
appears to be equivalent to eta squared (Gaito & Firth, 1973). U has
not apparently had a lasting impact, but was notable for its early
emphasis on the importance of an effect (i.e., its utility). Another rel-
ative of eta squared was the intraclass correlation coefficient (rho-i, ρi),
introduced by Fisher (1925) for use with random effects; it is analo-
gous to omega squared which is used more with fixed effects. For
fixed effects, T. L. Kelley (1935) recognized the bias in eta squared,
which tends to overestimate the population effect size, and developed
epsilon squared (ɛ2) as an improvement. Epsilon squared is equivalent
to adjusted R2 in regression contexts (Vogt & Johnson, 2015, p. 142),
and is very similar to omega squared, differing only in the denomina-
tor. Finally, Hays (1963) developed omega squared, also intended
mainly for fixed effects ANOVA. In the years since then, there have
been refinements of and debates about omega squared, including epsi-
lon versus omega (Glass & Hakstian, 1969), slightly unequal sample
sizes (Vaughan & Corballis, 1969), formulas for designs that include
random effects (Dodd & Schultz, 1973), formulas for MANOVA
and ANCOVA (Olejnik & Algina, 2000), the introduction of partial

omega squared (Keren & Lewis, 1979), and the introduction of gener-
alized omega squared (Olejnik & Algina, 2003).

It is worth considering the conceptual formulas that would be used
to calculate omega squared if we somehow magically knew popula-
tion values. A first helpful stepping stone in understanding the for-
mulas for the effect sizes is provided by Keppel and Wickens
(2004, p. 162), who expresses the idea of effect sizes in words:

effect size = variability explained
total variability

= total variability− unexplained variability
total variability

.

(5)

Effect size, in this context, represents the proportion of variability
that is accounted for by an effect (aka variable, factor, treatment).
Variance in the population can be represented by sigma squared
(σ2). This results in the population formulas for omega squared
shown in Table 1, which are all equivalent to each other.

The overall logic is the same across all these forms of the popula-
tion formula. Starting with the first row (formula 10.19.2 in Hays,
1963), s2

Y is the total population variance of variable Y, and s2
Y|X

is the population variance of Y within a particular group/condition
of variable X. That is, s2

Y|X is the remaining variance left in Y
(DV) given that you know X (IV). Assuming equal variance of Y
across all groups/conditions of X (i.e., homogeneity of variance,
aka homoscedasticity, which is an assumption underlying
ANOVA), s2

Y|X is simply the error variance, s2
e , which is the leftover

variance due to unkown variables. Thus, s2
Y − s2

Y|X gives us the var-
iance in Y attributable to variable X. Dividing that by s2

Y gives us the
proportion of Y’s variance that is attributable to X, or the propor-
tional reduction in uncertainty. This last interpretation is because
we can consider variance to be a kind of uncertainty (aka error). Say
we want to predict one person’s score on a memory test. Our best
guess is the mean score across all people; but the person’s actual
score might be some distance from that mean. Exactly how far? We
are uncertain. But the smaller the variance around that mean, the closer
we can get to making a good guess, and thus the less uncertain we are.

The next formula, from Maxwell et al. (1981, pp. 526–527) sim-
ply replaces s2

Y|X with s2
e .

The three formulas in the third-row switch to using A or α as the
label for the IV, instead of X. These formulas use the single term s2

A
or s2

a to represent the variance in Y that is attributable to X, then
divide by a sum that yields the total variance of Y.

Finally, the simplest population formula is provided by Cardinal
and Aitken (2005): the variance in Y due to X, divided by the
total variance in Y.9

In reality, we cannot truly know the population variances, because
for the purpose of inferential statistics in psychology, we typically
conceive of the population as an infinitely large hypothetical distri-
bution of all possible individuals of interest. Thus, the best we can do

7 There are other statistics that are referred to as omega: Cramer–von-Mises
omega squared, an alternative to the Kolmogorov–Smirnov test; Cohen’s
Omega, an effect size for Chi Square tests; and McDonald’s coefficient
omega, an alternative to Cronbach’s αmeasure of reliability. These are unre-
lated to the omega squared measure of effect size for ANOVA.

8 For a more thorough history of effect sizes, see Huberty (2002).
9 Some authors have argued that the very idea of total population variance

of Y is nonsensical. See Maxwell et al. (1981) for discussion.
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is to estimate those variances from sample data. This returns us to the
bias in eta squared, and how omega squared improves upon that.
Omega squared corrects for bias by both shrinking the numerator
and enlarging the denominator.10

Hays (1963) made these corrections by using a combination of
ANOVA expected mean squares E(MS), and some “nasty” algebra
(Keppel & Wickens, 2004, p. 163). The E(MS) are based on the
idea of repeatedly drawing samples from the population and calculat-
ingMSbetween andMSwithin for each sample, resulting in two sampling
distributions of these two MS values (Myers & Well, 2003, p. 203).
The means of these sampling distributions are the E(MS) and they
play an important role in ANOVA. Myers and Well (2003) present
the following formula for ω2 (p. 208; see also our Table 1):

v2 = s2
A

s2
A + s2

error

. (6)

The numerator (s2
A) represents the variance of the treatment effect,

while the denominator (s2
A + s2

error) represents total population vari-
ance. Each of these components can be replaced with formulas for
the E(MS). By using the E(MS) formulas, the formula for ω2 can be
rewritten as the estimate of the population parameter. In the general
formula for omega squared we replace “between” with “effect,” and
add a hat (circumflex) on top of the omega, to indicate that it is an esti-
mator. Myers and Well (2003, p. 209) rewrite the formula as follows:

v̂2 = [(a− 1)/a](1/n)(MSeffect −MSwithin)
[(a− 1)/a](1/n)(MSeffect −MSwithin)+MSwithin

(7)

where a is the number of groups/conditions in Factor A. Using alge-
bra, this formula can be rewritten more simply, using components
from the ANOVA table:

v̂2 = SSbetween − (dfeffect ×MSwithin)
SStotal +MSwithin

. (8)

Let us first consider the denominator, which contains the total var-
iance (SStotal), as well as the mean square of the error variance
(MSwithin). By adding MSwithin, the denominator is enlarged com-
pared to the formula for η2 (Equation 4). It may be counterintuitive
that a measure for error variance is added, while SStotal already con-
tains SSwithin. This can be explained by the formulas for E(MS), as
they follow the argument that the F-ratio (MSbetween/MSwithin) equals
1 when the null hypothesis is true (Keppel &Wickens, 2004, p. 36).
The idea is that, when the null hypothesis is true, MSbetween and

MSwithin are both estimates of s2
error, the error variance (Myers &

Well, 2003, p. 203). Therefore, it is argued that we should “choose
an error term such that its E(MS) and the E(MS) of the term to be
tested are identical when the null hypothesis is true” (p. 204). The
E(MS) formula for s2

A in the context of a one-way between-subjects
ANOVA is:

s2
A = nu2A + s2

error. (9)

This means that s2
error is part of the E(MS) formulas for s2

A as well
as added (again) to the total population variance (Glass & Hakstian,
1969, p. 406). MSwithin is considered to be a good estimator for
s2
error.

11

Now let us consider the numerator. Since the numerator of eta
squared (SSbetween) includes variance due to the independent vari-
able A as well as variance due to error, we need to subtract out the
error variance amount. The exact amount to be subtracted is worked
out using the E(MS) and degrees of freedom of MSbetween and
MSwithin. MSwithin represents the amount that each group mean in
the sample is expected to vary from its respective mean in the pop-
ulation. The number of times we subtract MSwithin is the degrees of
freedom of our IV: the number of independent observations (i.e.,
number of conditions in the IV) minus one for our estimation of
the overall population mean from sample data.

The formula for standard omega squared for one-way between-
subjects designs can also be rewritten as a function of the values
of F, dfeffect, and N (Carroll & Nordholm, 1975; Keppel &
Wickens, 2004; Maxwell et al., 2018):

v̂2 = dfeffect(Feffect − 1)
dfeffect(Feffect − 1)+ N

. (10)

Conceptually, this formula may be the most clear in how v̂2 cor-
rects for the sampling error which is present in η2. As stated before,
when there is no treatment effect and the null hypothesis holds true,
the F-valuewill approximate 1, asMSbetween andMSwithin in that case

Table 1
Population Formulas for Omega Squared

Formula Source

v2 = s2
Y − s2

Y|X
s2
Y

Hays (1963, pp. 325, 381–382)

v2 = s2
Y − s2

e

s2
Y

Maxwell et al. (1981, pp. 526–527)

v2 = s2
A

s2
A + se

2
v2 = s2

a

s2
a + s2

e

v2 = s2
A

s2
A + s2

S/A

Myers and Well (2003, p. 208), Vaughan and Corballis
(1969, p. 206), and Keppel (1991, p. 64)

v2 = s2
a

s2
Y

Cardinal and Aitken (2005)

10 Another very similar measure of effect size, epsilon squared, just shrinks
the numerator from eta squared, and does not change the denominator. For
detailed comparison of epsilon squared versus omega squared, see Glass
and Hakstian (1969) and Carroll and Nordholm (1975).

11 For more in-depth information on E(MS) and their use in ANOVA and
v̂2, we recommend: Carroll and Nordholm (1975), Dodd and Schultz (1973),
Glass and Hakstian (1969), Hays (1963), Maxwell et al. (1981), Myers and
Well (2003), and Vaughan and Corballis (1969).
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are both estimates of s2
error (Keppel & Wickens, 2004, p. 164). By

subtracting 1 from F, the sampling error is corrected. Because of
this correction, v̂2 is always smaller than η2.
To sum up, effect size for ANOVA consists of the proportion of

total variance in a DV that is attributable to an IV. Eta squared cal-
culates this very simply from sample data. Omega squared corrects
for the bias in eta squared by adjusting both the numerator and the
denominator, providing a better estimate of the effect size in the
broader population. Both eta squared and omega squared use values
that are readily available in an ANOVA summary table.

Underuse of Omega Squared

Bias in eta squared was described over 80 years ago (T. L. Kelley,
1935) and the less-biased alternative omega squared was proposed
60 years ago (Hays, 1963). Still, omega squared is rarely used.
There are several explanations for this. Traditionally, there has been
a heavy emphasis on significance testing, while behavioral scientists
were educated far less on effect sizes and power analysis (APA,
2020; Cohen, 1994; Hyde, 2001; Keppel, 1991). The emphasis on
the importance of effect size is relatively new. An explicit recommen-
dation to utilize effect sizes was added to the fourth publication man-
ual of the American Psychological Association (APA, 1994), but this
did not result in increased use of effect sizes in the following years
(Hyde, 2001; Thompson, 1999a, 1999b; Wilkinson, 1999). This
was perhaps due to the large number of editions of the publication
manual. The following editions have paid increasingly more attention
to effect sizes. The fifth edition of the publication manual mentioned
that “it is almost always necessary to include some index of effect size
or strength of relationship in your Results section” (APA, 2001, p. 26).
In the sixth and seventh editions, effect sizes have been added as a
requirement for all publications, and guidance was added on what
types of effect size should be reported (APA, 2010, 2020). The report-
ing of effect sizes has increased considerably since the late nineties;
research over the past two decades shows that approximately half of
the reported ANOVA tests are accompanied by any measure of effect
size (Alhija & Levy, 2009; Fritz et al., 2012; Peng et al., 2013; Sun
et al., 2006; Zhou & Skidmore, 2017).
The shortcomings of (partial) eta squared have not been discussed

in the publication manual (APA, 2020). Despite the overall increase
in reporting of effect sizes, eta squared and partial eta squared have
continued to dominate, as reviewed by Peng et al., 2013 (see also:
Alhija & Levy, 2009; Barry et al., 2016; Fritz et al., 2012; Kirk,
1996). For example, Fritz et al. (2012) examined articles published
in the Journal of Experimental Psychology: General in 2009 and
2010, and out of all the articles that reported ANOVA results, they
found only one use of omega squared, compared to 32 uses of eta
squared (either standard or partial). Although not as precise as the
manual counting done for review articles like those cited here, we
conducted a search of PsycINFO for publications in 2019 or 2020,
and we found 454 results that contained any of the following search
terms: η2, η^2, ηp2, or ηp^2. By contrast only 18 results contained
any of the following search terms: ω2, ω^2, ωp2, or ωp^2. Thus,
the underuse of omega squared continues.
The positive bias in eta squared and partial eta squared may actually

be one of the reasons why they are preferred over other effect size mea-
sures (Fritz et al., 2012). Other reasons for the high prevalence of eta
squared and partial eta squared are likely familiarity and convenience.
Partial eta squared can be automatically produced by the most used

statistical packages, like SPSS. This easy accessibility promotes its
use, even when it is not appropriate (Kirk, 1996; Zhou & Skidmore,
2017). Levine and Hullett (2002) further documented problems with
effect sizes reported from SPSS. Omega squared was not included at
all in SPSS until the 27th Version in 2020 (Mathew, 2020), and then
only for the one-way between-subjects ANOVA design.

The formulas for omega squared and partial omega squared differ
across designs, whichmakes themmore cumbersome to calculate than
eta squared and partial eta squared. Finding the right formulas, and
guidance on how to make calculations, is difficult. On the one
hand, much information is published only in statistical textbooks.
This content is often not indexed in commonly used internet search
engines. On the other hand, and perhaps most importantly, there is
no definite consensus on what formulas to use to calculate omega
squared (Maxwell et al., 2018). This holds especially true formultifac-
tor ANOVAs with one or more within-subjects factors. While some
authors argue that it is impossible to calculate omega squared in
these models (Keppel & Wickens, 2004), others recommend it
(Gaebelein & Soderquist, 1978). Moreover, most publications only
supply formulas for one- and two-way ANOVA designs, due to the
large number of possible formulas (for an exception, see Dodd &
Schultz, 1973; who also present formulas for three-way designs).
Lastly, different authors often use different symbols and subscripts
to describe the same components; while in other instances one term
is used to describe opposing constructs. This can be very confusing,
especially for inexperienced researchers. To aid in demystifying
omega squared, we have included a disambiguation table where we
clarify the different notations used in a selection of papers (see
Appendix A), and we have done the legwork of gathering and verify-
ing the formulas to use for the most common ANOVA designs.

Formulas for Omega Squared

In this section, we will present formulas for omega squared and
partial omega squared for ANOVA designs with fixed factors. For
designs with random factors, we recommend readers to consult
Dodd and Schultz (1973), Olejnik and Algina (2000), and
Vaughan and Corballis (1969). A quick overview of the formulas
can be found in Appendix B. For each design, wewill show an exam-
ple of output from SPSS (Version 28), highlighting where each com-
ponent of the relevant formula can be found. We recommend
calculating the formulas using widely available software such as
Microsoft Excel, and we provide examples of this in the online
supplemental materials.

Between-Subjects Designs

One-Way Between-Subjects Designs

Conceptually, the effect size in the population is estimated with
the following formula (see also Table 1):

v2 = s2
A

s2
A + s2

error

. (6, repeated)

For any size between-subjects design with fixed factors, the for-
mula for standard omega squared can be expressed in terms found
in the ANOVA table (Dodd & Schultz, 1973):

v̂2 = SSeffect − (dfeffect ×MSerror)
SStotal +MSerror

. (11)
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In the one-way between-subjects ANOVAs, the subscripts
between and within are often used (see Equation 8). In other designs,
these subscripts are replaced with effect and error, respectively. For
consistency, we will use effect and error in the formulas for all
designs. See Figure 1 for an example of SPSS output from a one-way
between-subjects ANOVA, showing the components used for
omega squared. In this example, v̂2 = .047. By comparison,
η2= .075. Notice that v̂2 , η2, as expected. Note also that we report
omega squared to three decimal places, and never include a leading
zero.

Multifactor Between-Subjects Designs and Partial Omega
Squared

For multifactor between-subjects designs (aka higher order
designs; two-way, three-way, etc.) it can be argued that it is inappro-
priate to use the standard omega squared formula (Keppel &
Wickens, 2004). This is because the estimated total variance
(ŝ2

total, see Table 1) varies across designs. So, in a one-way design,
the formula for the effect size of Factor A would be:

v̂2 = ŝ2
A

ŝ2
A + ŝ2

error

. (6, estimated version)

And in a two-way design, where Factor B is added, the formula
would be:

v̂2 = ŝ2
A

ŝ2
A + ŝ2

B + ŝ2
AB + ŝ2

error

. (12)

This means that even when the estimated variance components for
Factor A and the random error are identical in both designs, this will
result in a different value for the estimated effect size. Therefore, par-
tial omega squared is proposed, which always consists of the same

components as the one-way design, regardless of the total number
of factors in the design (Keppel, 1991). The effects of other factors
are partialled out (Keren & Lewis, 1979) and can be written as:

v̂2
p =

SSeffect − (dfeffect ×MSerror)
SSeffect + (N − dfeffect)MSerror

. (13)

Standard omega squared represents the proportion of the total var-
iance explained by the effect of one factor. Partial omega squared
represents the proportion of variance explained exclusively by one
factor that is not explained by other factors in the model. As the
denominator for partial omega squared is smaller, this will always
result in a higher value. The standard effect size is useful to compare
the effect of the various factors within the design. This is impossible
with the partial effect size, as they do not share the same denomina-
tor (Sechrest & Yeaton, 1982). The partial effect size is suitable for
power analysis (Keppel & Wickens, 2004) and usually more suited
to make comparisons across designs (Fritz et al., 2012; Keppel &
Wickens, 2004; Levine & Hullett, 2002). We will go into the matter
of partialling out factors and comparability further in the section on
obstacles in using omega squared.

See Figure 2 for an example of SPSS output from a two-way
between-subjects ANOVA, showing the components used for partial
omega squared.

The formulas for omega squared and partial omega squared in
between-subject designs can be rewritten to be computed from the
F-test statistic, df, and N (Maxwell et al., 2018). This is especially
straightforward for partial omega squared (which is the same as
the formula for standard omega squared in one-way designs, see
Equation 10).

v̂2 = dfeffect(Feffect − 1)∑
all effects (dfeffectFeffect)+ dferror + 1

, (14)

v̂2
p =

dfeffect(Feffect − 1)
dfeffect(Feffect − 1)+ N

. (15)

As the sample size and levels of the factors should be reported
in any research paper, this means that omega squared and
partial omega squared in between-subjects designs can often be
calculated even in absence of an ANOVA table. For standard
omega squared this requires the F-values and df for all factors in
the design.

Within-Subjects Designs

About Within-Subjects Factors

When all subjects receive all levels of a treatment, the treatment is a
within-subjects factor (Keppel &Wickens, 2004, p. 347). As the sub-
jects are measured more than once, they are a potential source of var-
iance (Tabachnick& Fidell, 2007, p. 249). A one-way within-subjects
design can therefore be thought of as a two-factor design, often indi-
cated as an Ā× S design. Factor Ā is the fixed within-subjects factor
(a line is added above the letter to signify awithin-subjects factor), and
the subjects form the second, random between-subjects Factor S
(Dodd & Schultz, 1973; Keppel & Wickens, 2004; Olejnik &
Algina, 2000). The presence of Factor S complicates the conceptual-
ization of standard and partial omega squared inANOVAs that include
within-subjects designs. This has led some authors to claim that it is
impossible (Keppel, 1991; Keppel & Wickens, 2004) or at least

Figure 1
The Components for Standard Omega Squared in SPSS Output for
a One-Way Between-Subjects Design

Note. Data are from “Relative Contributions of Semantic and
Phonological Associates to Over-Additive False Recall in Hybrid DRM
Lists,” by J. R. Finley, V. W. Sungkhasettee, H. L. Roediger, and
D. A. Balota, 2017, Journal of Memory and Language, 93, pp. 154–168
(https://doi.org/10.1016/j.jml.2016.07.006). Copyright 2017 by the
Elsevier B.V., available in the online supplemental materials. SPSS
Version 28. See the online article for the color version of this figure.
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problematic (Gaebelein & Soderquist, 1978; Vaughan & Corballis,
1969) to calculate omega squared for within-subjects designs. We
will describe these complications and subsequently argue that
omega squared can indeed be calculated.
When we insert a one-way within-subjects design into a table, this

table holds one observation in each cell (Keppel & Wickens, 2004;
Olejnik & Algina, 2000; Tabachnick & Fidell, 2007), as shown in
Table 2.
In a one-way within-subjects design, there are two identifi-

able sources of variance: variance due to treatment Ā (ŝ2
effect) and var-

iance due to the systematic differences between subjects (ŝ2
subject). The

remaining variance in the model is indicated with ŝ2
effect ×subject.

Ideally, ŝ2
effect ×subject is made up solely of random variance (error).

This is the strength of within-subjects designs compared to between-
subjects designs (Keppel & Wickens, 2004; Lakens, 2013; Loftus &
Masson, 1994). In a between-subjects design, no distinction can be
made between random error and systematic differences between sub-
jects, and the total variance is therefore simply defined as:

ŝ2
total = ŝ2

effect + ŝ2
error. (16)

While in a within-subjects design, ŝ2
error is replaced with

ŝ2
subjects + ŝ2

effect ×subject. There are two ways to define the total var-
iance for within-subjects designs (Keppel, 1991):

ŝ2
total = ŝ2

effect + ŝ2
subjects + ŝ2

effect ×subject, (17)

and

ŝ2
total = ŝ2

effect + ŝ2
effect ×subject. (18)

Excluding the variance due to subjects from the total variance
leads to higher effect sizes and power, which are important reasons
for authors to adopt a within-subjects design (Keppel, 1991; Keppel
&Wickens, 2004; Lakens, 2013). This can be seen as partialling out
the random Factor S, similar to how one would calculate partial
effect sizes in a multifactor between-subjects design. However,
there are three important arguments not to partial out the systematic
differences between subjects. Firstly, because of the viewpoint that

Figure 2
The Components for Partial Omega Squared in SPSS Output for a Two-Way Between-Subjects
Design

Note. Data are from “Adaptive and Qualitative Changes in Encoding Strategy With Experience: Evidence
From the Test-Expectancy Paradigm,” by J. R. Finley and A. S. Benjamin, 2012, Journal of Experimental
Psychology: Learning, Memory, and Cognition, 38(3), pp. 632–652 (https://doi.org/10.1037/A0026215).
Copyright 2012 by the American Psychological Association, available in the online supplemental materials.
SPSS Version 28. See the online article for the color version of this figure.

Table 2
One-Way Within-Subjects (Ā× S) ANOVA Design With a= 3
Conditions and N= 3 Subjects

Subjects

Conditions of factor A

a1 a2 a3

s1 Y11 Y12 Y13

s2 Y21 Y22 Y23

s3 Y31 Y32 Y33
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effect sizes are meant to provide a standard metric that can be used
across designs (Lakens, 2013; Maxwell et al., 2018). As the system-
atic differences between subjects are not partialled out in between-
subjects designs, they should not be partialled out in within-subjects
designs either, for comparability purposes. The higher effect sizes
found in within-subjects designs when the systematic differences
between subjects are partialled out, are therefore often seen as over-
estimations of the actual effect size (Lakens, 2013; Maxwell et al.,
2018; Olejnik & Algina, 2003). Secondly, systematic differences
between individuals are seen as part of the total population variance
(Maxwell et al., 2018). It appears illogical to disregard them as such
in within-subjects designs. The third argument relates to the assump-
tion of additivity, which we will discuss below. Wewill then present
formulas in which the variance due to subjects is not partialled out.
In the section on obstacles for using omega squared we will discuss
alternatives in which the subject variance can be partialled out.

Nonadditivity

The third argument to not partial out the variance due to subjects
from the total variance relates to (non)additivity. ANOVAs for designs
that include one or more within-subjects factors have to meet the
assumption of additivity, which is a component of the assumption
of sphericity (Tabachnick & Fidell, 2007). The assumption of spher-
icity holds true when the variances across conditions, as well as the
covariances between pairs of conditions, are equal (Field, 2017,
p. 654). The F test is not robust against violation of the assumption
of sphericity, and violations increase the chance of Type I error
(Maxwell et al., 2018). Departure from sphericity can be measured.
It is denoted with a lower case epsilon (ɛ) and when the assumption
of sphericity is met perfectly, it has a value of 1 (Maxwell et al.
2018). There are three well-known estimators for epsilon:
Greenhouse–Geisser, Huynh–Feldt, and the lower-bound estimate
of sphericity. In SPSS output for an ANOVA that includes within-
subjects factors, those estimators are listed in a table titled
“Mauchly’s Test of Sphericity.” When the assumption of sphericity
is false, the estimators will be smaller than 1 and a correction should
be made to the degrees of freedom. Mauchly’s test itself is problem-
atic, especially for small samples (Field, 2017, p. 655; Maxwell et al.,
2018, p. 629), but the general idea is that if the test is statistically sig-
nificant, then corrected df should be used.12 The corrected df are listed
as separate rows in the “Tests of Within-Subjects Effects” table of the
SPSS output. While using the corrected degrees of freedom increases
the p-value, it does not impact omega squared. This is because adjust-
ments are made to all components used to calculate omega squared, so
while the absolute values are changed, the ratio between the numerator
and the denominator remains the same. The bottom line is that for cal-
culating omega squared, it will not matter whether or not you use df
corrected for violation of sphericity.
Additivity and sphericity are regularly discussed as if they are

interchangeable, but in fact additivity is a component of sphericity.
For a more thorough explanation of the relation between sphericity
and additivity see Tabachnick and Fidell (2007, pp. 247–248,
284–288). As a general term, additivity signifies that there is no
interaction between factors. Take for instance, the effect of fertilizer
and picking the bugs off our fictional rosebushes. We have tried
these measures separately and know our roses grow 3 cm a week
because of fertilizer and 2 cm because we remove the bugs. Now
we decide to treat our bushes to both of the treatments at the

same time. If the model is additive, the roses grow 5 cm in total.
But if they suddenly grow 7 cm the model is nonadditive, the bug-
picking and fertilizer interact and contribute to an additional 2 cm
of growth.

In within-subjects designs, a distinction can be made between
additive and nonadditive models (Dodd & Schultz, 1973; Keppel,
1991; Tabachnick & Fidell, 2007; Vaughan & Corballis, 1969;
Winer, 1962). This does not refer to the possible interaction of the
factors we are investigating, but to the possible interaction of the ran-
dom subjects factor S with the IVs. Recall that in the within-subjects
design we have one variance component that simultaneously indi-
cates random variance (error) and the interaction between the treat-
ment and the subjects: ŝ2

effect ×subject (Tabachnick & Fidell, 2007).
Ideally, we would have an additive design, where there is no interac-
tion between the treatment and the subjects. When there is no inter-
action, ŝ2

effect ×subject represents only random error and this gives us
the possibility to partial out the systematic differences between sub-
jects (ŝ2

subject). However, in any design that includes at least one
within-subjects factor with more than two levels it is unreasonable
to assume that the model is additive (Keppel, 1991; Tabachnick &
Fidell, 2007). In the social and behavioral sciences it is practically
impossible to imagine a repeated measure that will not interact
with the individual (Tabachnick & Fidell, 2007, p. 248). It is often
impossible to differentiate which part of ŝ2

effect ×subject is due to ran-
dom error and which is due to the interaction between the subjects
and the IV (Dodd & Schultz, 1973; Gaebelein & Soderquist,
1978; Keppel & Wickens, 2004; Vaughan & Corballis, 1969). A
test for nonadditivity was devised by Tukey (1949; Winer, 1962)
and is included in statistical packages like SPSS (Myers & Well,
2003) and SAS (Zambarano, 1992). However, this test is only suit-
able to assess one specific type of nonadditivity, while other kinds
exist (Dodd & Schultz, 1973; Zambarano, 1992). Zambarano
(1992) provides some guidance on other methods to assess additiv-
ity, but this requires advanced statistical knowledge and still does not
lead to a conclusive answer whether or not a model is additive. In
practice, additivity is not often tested for; tests for sphericity and
homogeneity of variance are seen as sufficient (Tabachnick &
Fidell, 2007). When a model is completely additive, this automati-
cally means that the assumption of sphericity is met. However, a
model can be nonadditive while still meeting the assumption of
sphericity through compound symmetry, and without inflating the
F test. Thus, meeting the assumption of sphericity does not ensure
additivity. A model where nonadditivity may cause problems
can be improved by adding a between-subjects “blocking” factor
(Tabachnick & Fidell, 2007, p. 285). For instance, if it is expected
that native speakers recall more words in a memory test than nonna-
tive speakers, mother tongue can be added as a between-subjects fac-
tor. The interaction of mother tongue with the factor is then removed
from the error term. Still, other sources of nonadditivity could
remain. It is also possible to transform the data to an additive scale
(Myers & Well, 2003), although it can be challenging to find guid-
ance on how to exactly transform the data. Some authors conclude
that it is impossible to calculate omega squared for within-subjects
designs, as it is impossible to estimate each source of error variance

12 For guidelines on how to assess sphericity and which estimator to
choose, see Maxwell et al. (2018, pp. 627–634) and Tabachnick and Fidell
(2007, pp. 284–288).
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independently (Gaebelein & Soderquist, 1978; Keppel & Wickens,
2004).
In summary, nonadditivity is a complicated matter. In practice,

tests for the assumption homogeneity of variance and sphericity
are seen as sufficient when carrying out ANOVAs (Tabachnick &
Fidell, 2007), but this does not solve the conundrum of choosing
which formula to use to calculate the effect size. We argue that
using the formulas presented in this paper circumvents the problem
by not partialling out variance caused by systematic differences
between subjects. At the end of this section on designs that include
within-subjects factors, we will discuss alternatives proposed by
other authors. As there are many other options, we recommend to
always report the formula used when reporting omega squared, espe-
cially when within-subjects factors are involved, and to include the
full ANOVA table.

One-Way Within-Subjects Designs

For within-subjects designs, the formula for standard omega
squared is similar to the between-subjects design. The differences
lie in the use of the two variance components (Dodd & Schultz,

1973; Keppel & Wickens, 2004; Maxwell et al., 2018):

v̂2 = SSeffect − (dfeffect × MSeffect×subject)
SStotal +MSsubject

. (19)

See Figure 3 for an example of SPSS output, showing the compo-
nents used for omega squared.

SPSS does not output the total sum of squares for within-subjects
designs, and thus it is necessary to calculate SStotal from three values,
as shown in Figure 3. It is necessary to use values from the “Tests of
Between-Subjects Effects” table, even though this is a within-
subjects design, because that is where the subject factor values can
be found (labeled “error” by SPSS). The “intercept” factor in that
table should be ignored for our purposes.

The exclusion of SStotal from SPSS output may relate to the dis-
cussion on whether SSsubject should be included in SStotal. For formu-
las that do partial out the systematic differences between subjects we
recommend Olejnik and Algina (2000) and Keppel and Wickens
(2004). It should be noted that these authors present different formu-
las that yield quite different results. This is because Olejnik and
Algina (2000) add the product of the error term and the number of

Figure 3
The Components for Standard Omega Squared in SPSS Output for a One-Way Within-Subjects
Design

Note. Data are from “Benefits of Accumulating Versus Diminishing Cues in Recall,” by J. R. Finley,
A. S. Benjamin, M. J. Hays, R. A. Bjork, and N. Kornell, 2011, Journal of Memory and Language,
64(4), pp. 289–298 (https://doi.org/10.1016/j.jml.2011.01.006). Copyright 2011 by the Elsevier B.V.,
available in the online supplemental materials. SPSS Version 28. See the online article for the color version
of this figure. See the online article for the color version of this figure.
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subjects to the denominator, while Keppel and Wickens (2004) add
the number of observations.

Multifactor Within-Subjects Designs

For multifactor within-subjects designs (two-way, three-way, etc.)
partial omega squared can be calculated. Maxwell et al. (2018,
p. 674) state: “We generally believe that the value of omega squared
we calculate for a main effect in a factorial design should be identical
to the value we would have obtained for that effect in a single-factor
design.” This reasoning follows the same logic as the partial omega
squared formula for higher-order between-subjects designs. For par-
tial omega squared the total sum of squares in the formula of stan-
dard omega squared is replaced with the components that form the
total sum of squares in the one-way design:

v̂2
p =

SSeffect − (dfeffect × MSeffect×subject)
SSeffect + SSeffect×subject + SSsubject +MSsubject

. (20)

See Figure 4 for an example of SPSS output from a two-way
within-subjects ANOVA, showing the components used for partial
omega squared. Again, the “Tests of Between-Subjects Effects”
table is necessary to find the subject values (labeled “error” by
SPSS), and the “intercept” factor should be ignored.

As with the one-way within-subjects design, the systematic differ-
ences between subjects are not partialled out, but all other factors
are. Because partial eta squared does partial out the variance between
subjects, Maxwell et al. (2018) argue that referring to this statistic as
partial omega squared may lead to confusion and they refrain from
doing so (p. 725). However, we argue that not making a distinction
between this formula and the formula for standard omega squared, is
still confusing. As we follow the idea that formulas for omega
squared and partial omega squared should be comparable across
designs, it is justifiable to define this formula as partial omega
squared.

For between-subjects designs the formula for omega squared
can be rewritten as a function of the F test statistic, df, and N
(Equations 14 and 15). This is possible for between-subjects designs
because omega squared is calculated with variance components
from the effect and from subject error, both of which are also part
of the calculation of F. But rewriting the formula in such a way is
impossible for designs that include within-subjects factors. For
designs including any within-subjects factors (including split–plot
designs), F is calculated without the variance due to subjects. It
only includes the variance due to the interaction between the effect
and the subjects (Ā× S). As our formulas for omega squared
include the variance due to subjects, omega squared cannot be

Figure 4
The Components for Partial Omega Squared in SPSS Output for a Two-Way Within-Subjects
Design

Note. Data are from “Strategic Use of Internal and External Memory in Everyday Life: Episodic,
Semantic, Procedural, and Prospective Purposes,” by J. R. Finley and F. Naaz, 2023, Memory, 31(1),
pp. 108–126 (https://doi.org/10.1080/09658211.2022.2126858). Copyright 2023 by the Informa UK
Limited, available in the online supplemental materials. SPSS Version 28. See the online article for the
color version of this figure.
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deduced from F for designs that includewithin-subjects factors. Some
authors do suggest formulas to calculate omega squared from F. For
the one-way within-subjects design, Keppel and Wickens (2004,
p. 362) suggest using the same formula as for between-subjects
designs (Equation 14 in this paper). As this excludes the variance
due to subjects, this yields a higher value for omega squared than
the formulas we have presented. For multifactor-designs, Keppel
and Wickens (2004) present two formulas based on F to calculate a
range in which omega squared falls. This often results in a rather
large range, which is “too broad to be useful” (p. 427). It should be
noted that the formula that they propose for the lower end of the
range still yields a higher value than the formula we have presented,
while the higher end of the range yields a lower value than partial
eta squared. The bottom line is that there is no certain way to calculate
omega squared from F for any within-subjects design.

Split–Plot Designs

A split–plot design is one in which there is at least one between-
subjects factor and at least one within-subjects factor. These designs
do include estimates of random error due to the within-subjects fac-
tor (ŝ2

effect ×subject), as well as an error term that includes systematic
differences due to the between-subjects factor (ŝ2

error). For standard
omega squared, the formula is as follows (Dodd & Schultz, 1973):

v̂2 = SSeffect − (dfeffect × MSappropriate term)
SStotal +MSsubject/A

. (21)

The appropriate error term for the numerator (MSappropriate term)
depends on the factor of interest. To clarify, we will use an example
with between-subjects Factor A and within-subjects Factor B̄. For the
main effect of Factor A the appropriate term is MSsubject/A; for the
main effect of Factor B̄ and for the interaction AB̄ the appropriate
error term isMSB×subject/A (Maxwell et al., 2018). For calculating stan-
dard omega squared in split–plot designs with more factors (and thus
with more possible interactions), the appropriate error term for main
effects and interaction effects of between-subjects factors will always
be MSsubject/X, where X stands for all the between-subjects factors in
the design. When the effect of interest includes one or more within-
subjects factors, the error termwill be based on that factor(s). For exam-
ple, in an ABC̄S model, when investigating the AC̄ interaction, the
appropriate error term is MSC×subject/AB. In an AB̄C̄S model, when
investigating the AB̄C̄ interaction, the appropriate error term is
MSBC×subject/A.
When calculating partial omega squared for a split–plot design the

formula also depends on what type of factor is used. If the effect of
interest includes one or more within-subjects factors, we use the fol-
lowing formula (see Figure 5A):

v̂2
p =

SSeffect − (dfeffect ×MSeffect×subject/A)
SSeffect + SSeffect×subject/A + SSsubject/A +MSsubject/A

. (22)

Note that even an interaction between a within-subjects factor and
a between-subjects factor should use the within-subjects formula.
If the effect of interest concerns only between-subjects factors, we

use the following formula (see Figure 5B):

v̂2
p =

SSeffect − (dfeffect ×MSsubject/A)
SSeffect + SSsubject/A +MSsubject/A

. (23)

See Figure 5A and B for an example of SPSS output from a two-
way split–plot ANOVA, showing the components used for partial
omega squared for the within-subjects factor (Figure 5A), and for
the between-subjects factor (Figure 5B).

In theory, Equations 21–23 can be used for split–plot designs with
any number of factors, as long as the right error terms are selected.
Olejnik and Algina (2000) present other formulas for split–plot
designs (table 18, pp. 278–279). For the effects that include within-
subjects factors, the systematic differences are partialled out.
However, readers should use those formulas with caution, as they
apparently contain mistakes for the within-subjects factors; the
examples provided by Olejnik and Algina in Table 18 of their
paper are calculated differently from what the formulas prescribe.

Alternatives for Dealing With Nonadditivity

We have presented formulas in which the variability due to sub-
jects is not partialled out. Alternatives to this method exist. Some
authors have proposed ways to calculate a possible range for
omega squared (Myers & Well, 2003; Tabachnick & Fidell,
2007). Other authors propose specific formulas in which the denom-
inator is increased by adding an error term for each nonadditive
effect. Interested readers can find these formulas for one, two and
three-way designs in Dodd and Schultz (1973); and Vaughan and
Corballis (1969). It should be noted that Vaughan and Corballis
exclude SSsubjects from SStotal, while Dodd and Schultz do not specify
whether they include SSsubjects in SStotal. We argue that by not parti-
alling out the variance caused by systematic differences between
subjects, the problem of nonadditivity is avoided altogether. The
papers that provide formulas that correct for nonadditivity do not
provide formulas for partial omega squared (Dodd & Schultz,
1973; Vaughan & Corballis, 1969). Following the logic that the par-
tial effect size should be equivalent to the effect size that would be
obtained in a one-way design (Keppel &Wickens, 2004; Maxwell et
al., 2018), one can use the correction provided by Dodd and Schultz
(1973) for the one way design by adding (N×MSeffect×subject) to the
denominator:

v̂2
p = dfeffect(MSeffect −MSerror)

SSeffect + SSeffect×subject + SSsubject +MSsubject + (N ×MSeffect×subject)
.

(24)

Another solution to the problem of nonadditivity is to investigate
the contrasts for each level of the within-subjects factor of interest
(Boik, 1981). When investigating the 1 df contrasts, the assumptions
of additivity and sphericity are no longer in effect. Lastly, it is impor-
tant to note that using (partial) eta squared does not circumvent the
problems caused by nonadditivity. Eta squared “treats the ambiguity
in the error variances in a way that gives it the largest possible value”
(Keppel & Wickens, 2004, p. 428), giving a result that is positively
biased.

Remaining Obstacles in Using Omega Squared

Partialling Out Factors

Partial eta squared is the most popular effect size (Alhija & Levy,
2009; Fritz et al., 2012; Peng et al., 2013; Sun et al., 2006; Zhou &
Skidmore, 2017) and some authors recommend always reporting a
partial measure of effect (Keppel, 1991; Keppel & Wickens,
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2004). However, partial effect sizes can be misleading and harder to
interpret than standard effect sizes (Cohen, 1973; Levine & Hullett,
2002; Olejnik & Algina, 2003). The more independent causes there
are for an effect, the smaller the effect size is for any of the individual
causes. This is disregarded when using a partial effect size (Levine &
Hullett, 2002). Identifying causes in a model can reduce the unex-
plained variance by adding them as a factor (Tabachnick & Fidell,
2007). However, it is likely that any factor that is added to an

ANOVA design can simultaneously reduce error while instilling
additional variance (Levine & Hullett, 2002). This makes it hard
to decide whether a factor can be partialled out. To use partial
omega squared, it is necessary that the other factor(s) in the design
can be seen as extrinsic (Maxwell et al., 2018). It has to be reason-
able to partial out Factor B when investigating the effect of Factor A.
Cohen (1973) advised that manipulated variables and variables that
are held constant can usually be safely partialled out. When it is

Figure 5
The Components for Partial Omega Squared in SPSS Output for a Two-Way Split-Plot Design

Note. (Panel A) The components for partial omega squared in SPSS output for the effect of the within-
subjects factor in a two-way split–plot design. (Panel B) The components for partial omega squared in
SPSS output for the effect of the between-subjects factor in a two-way split–plot design. Data are from
“Simultaneous Versus Sequential Presentation in Testing Recognition Memory for Faces,” by
J. R. Finley, H. L. Roediger, A. D. Hughes, C. N. Wahlheim, and L. L. Jacoby, 2015, The American
Journal of Psychology, 128(2), pp. 173–195 (https://doi.org/10.5406/amerjpsyc.128.2.0173). Copyright
2015 by the Duke University Press, available in the online supplemental materials. SPSS Version 28.
See the online article for the color version of this figure.
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likely that an additional factor has an influence on Factor A, the fac-
tor is called intrinsic and it should not be excluded when calculating
an effect size (Maxwell et al., 2018). When the effect size is inflated
because intrinsic factors are partialled out, it is no longer comparable
to studies that do not include these factors in their models (Olejnik &
Algina, 2003). Therefore, when the other factors are (possibly)
intrinsic, it is better to provide a nonpartial effect size (Levine &
Hullett, 2010). It is of course quite possible that a design contains
both extrinsic and intrinsic factors, which complicates the choice
between the standard and partial effect size. A solution is offered
in generalized omega squared (v̂2

G), which is explained by Olejnik
and Algina (2003). They go into many different designs (including
random and fixed factors), where some factors are regarded as extrin-
sic and others as intrinsic. As this results in a myriad of possible
combinations, this goes beyond the scope of this paper. However,
by sharing the full ANOVA tables, researchers can enable others
to calculate generalized omega squared. In their paper on general-
ized effect sizes, Olejnik and Algina also describe generalized eta
squared (ĥ2

G). Similar to generalized omega squared, this effect
size offers solutions to the problem of extrinsic and intrinsic factors.
Additionally, its calculation is less complicated than the calculation
of generalized omega squared. However, like its nongeneralized
counterpart, generalized eta squared is a descriptor of the sample
and not of the population, and it does not compensate for the over-
estimation of the variance due to treatment (Olejnik & Algina, 2003,
p. 441).
It can be hard to decide whether a factor should be regarded as

intrinsic or extrinsic. Another solution can be to report both partial
and standard effect sizes (Cohen, 1973). We recommend reporting
explicitly which factors are considered intrinsic and which extrinsic.
Again we advise reporting the formulas you use for the effect size, as
well as including an ANOVA table.

Confidence Intervals for Omega Squared for
Between-Subjects Designs

The APA recommends reporting confidence intervals for statis-
tics, including effect sizes (7th ed., section 3.7; see also Fritz
et al., 2012). As with any statistic, the effect size we calculate
from our data is an estimate of the true effect size in the population.
This is why we put the hat symbol over the Greek letter omega.
How confident should we be in this estimate of effect size? That
is what the confidence interval tells us. The wider the interval,
the less precise is our estimate; the narrower the interval, the
more precise is our estimate. A 95% confidence interval around a
sample statistic means that if we were to endlessly resample the
population with the same sample size each time, and put that
same confidence interval width around the calculated sample statis-
tic each time, that interval would contain the true population param-
eter 95% of the time. Unfortunately, determining confidence
intervals is not straightforward for effect sizes such as eta squared
and omega squared (Fidler & Thompson, 2001; K. Kelley, 2007;
Thompson, 2007). In fact, as of this writing, there is no consensus
on how to correctly calculate omega-squared confidence intervals
for within-subjects factors (K. Kelley, personal communication,
March 17, 2022). However, it can be done for between-subjects
factors.
For statistics such as the mean, a confidence interval can be

obtained using a single simple formula. This is not possible for

statistics such as eta squared or omega squared. But there is a round-
about way to do it, which we will now explain.

Remember that each effect size is tied to an effect. In ANOVA
designs, each effect is tested using an F-test statistic. F is a ratio
(e.g., MSeffect/MSerror in a one-way between-subjects design, also
called MSbetween/MSwithin). When there is no effect, the numerator
and denominator are equal, yielding F= 1. If there is truly no effect
in the population, then we would expect a sampling distribution of
F values that is centered on F= 1, and skewed with a long tail to
the right, since a ratio cannot go below 0. This is called the “central”
F distribution. When we conclude that an effect is statistically signif-
icant, we are saying that the F test statistic that we obtained from our
sample has less than a 5% probability of coming from that central F
sampling distribution expected from the null hypothesis.

So then, what sampling distribution did our F statistic most likely
come from? A different F distribution that is shifted over to the right
by a noncentrality parameter, which is called lambda (λ). For a par-
ticular F statistic, lambda can be estimated iteratively by computer
software. Software packages essentially use very advanced lookup
tables. As there is an enormous number of possible lambda tables,
finding the right lambda is virtually impossible without specialized
software. Furthermore, the same methods can give us confidence
intervals for lambda.13

Why is this relevant to omega squared? Because, for between-
subjects designs, omega squared is related to lambda by a simple
formula:

v2 = l

l+ Ntotal
. (25)

Thus, we can calculate the confidence intervals for lambda, then
convert those to the confidence intervals for omega squared.14

The steps for this procedure are laid out in Steiger (2004, p. 168),
including additional details such as determining when one or both
limits of the CI would be set to zero. K. Kelley (2007, Section 4)
covers similar procedures for CIs for R2 in a regression context
(which is eta squared in an ANOVA context). Unfortunately, as of
this writing, such procedures for determining CIs are not easily
available in popular statistical software such as SPSS.

Ambitious researchers may refer to Fidler and Thompson (2001,
pp. 592–593) and Smithson (2001, Appendix), for syntax-based
methods to calculate CIs in SPSS. Related procedures have been
implemented in Excel (Cumming & Finch, 2001; Nelson, 2016),
but do not provide a ready-made solution for researchers who just
want to determine a CI with minimal struggle.

However, Ken Kelley has written a package of functions that can
dowhat we need, called MBESS (K. Kelley, 2007, 2022), which can
be used with the popular free statistical software called R. For the
many researchers who are not well-versed in R, its use can be daunt-
ing and its documentation cryptic. We have faced our own confusion
in using R, so we want to help readers by explaining the exact steps

13 For more detailed discussion of noncentral distributions and their role in
determining confidence intervals, see: Cumming and Finch (2001), Smithson
(2001), and Steiger and Fouladi (1997).

14 In addition to the noncentrality parameter approach to constructing con-
fidence intervals, K. Kelley (2005) proposed two bootstrapping approaches,
which were further studied by Algina et al. (2006) and Finch and French
(2012). We do not address those approaches here.

DEMYSTIFYING OMEGA SQUARED 15

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



necessary to use R to determine CIs for omega squared. This same
procedure works for partial omega squared.

1. Go to https://cran.r-project.org/ and download R for the
appropriate operating system for your computer (e.g., Mac
OS, Windows). Use the downloaded file to install R.

2. Open R on your computer. You will see that it is a command
line interface, in which you must type specific commands to
tell the program what to do. Whenever you type a command,
you must press the enter or return key to run the command.
There are graphical user interfaces that can be installed for R,
such asRStudio andRCommander, but they are not necessary.

3. Enter the following command:
install.packages(“MBESS”)
This command will retrieve the MBESS package of func-

tions from R servers and then install that package. You only
need to do this step once; the next time you use R, MBESS
will already be installed.

4. Enter the following command:
library(“MBESS”)
This command will load the MBESS package so that its

functions are ready to use. You will have to do this step
every time you use R in order to use the MBESS bpackage.
Optionally, if you would like to read the manual for this
package, you can visit https://cran.r-project.org/web/
packages/MBESS/index.html or enter the following com-
mand in R: help(“MBESS”)

5. You will need to have the following values ready: F for the
effect of interest, degrees freedom for the numerator of F
(df1, aka dfeffect), degrees freedom for the denominator of F
(df2, aka dferror), and the total sample size of the design (N ).
Note that you do not even need the value of omega squared.

6. Now you will use the function ci.omega2 (added to the
MBESS package in Version 4.9.0). Optionally, if you
would like to read the manual for this function, enter the
command: help(ci.omega2)
To actually show you how to run the function, wewill use

values from the one-way between-subjects design example
data (Finley et al., 2017) available in the online supplemental
materials.

7. Enter the following command:
ci.omega2 (F.value=2.698, df.1=16,

df.2=536, N=553)
8. The output gives separate values for the lower and upper

limits of the confidence interval, and looks like this:
$lower_limit_omega2
[1] 0.0150022
$upper_limit_omega2
[1] 0.09235316

9. Omega squared from this example was separately calculated
as .047 (Figure 1). We would report as follows: v̂2 = .047,
95% CI [.015, .092].

The confidence interval coverage is set to .95 (95%) by default for
the ci.omega2 function. If you wanted to instead calculate a 90%
CI, you would add conf.level=0.90 so that you would enter
the following command:
ci.omega2 (F.value=2.698, df.1=16, df.2=536,

N=553, conf.level=0.90)

Note that if a value “NA” is output for one or both limits, just use 0
in place of NA. Here is an example using the main effect of Actual
Test Format from our two-way between-subjects example data
(Finley & Benjamin, 2012):

Command:

ci.omega2(F.value=31.496, df.1=1, df.2=1, N=100)

Output:

$lower_limit_omega2
[1] NA
$upper_limit_omega2
[1] 0.6201419

Partial omega squared for this effect was separately calculated
as .234 (see the online supplemental materials). We would
report as follows: v̂2

p = .234, 95% CI [0, .620].

Confidence Intervals for Designs Including
Within-Subjects Factors

When calculating confidence intervals, matters are more com-
plicated for designs that include one or more within-subjects fac-
tors. As far as we know, no research into CIs for within-subjects
and split–plot designs has been published. Whenever a within-
subjects factor is included, omega squared is not directly related
to F, as the error due to subjects is not part of the formula for F.
Subsequently, omega squared is also not directly related to lambda.
Perhaps future researchers could solve this problem by calculating
a correction for lambda, or by developing a formula for omega
squared that does derive from F even when within-subjects factors
are present. Any such work that would provide more clarity on CIs
for within-subjects designs would necessitate a Monte Carlo sim-
ulation study (K. Kelley, personal communication, March 21,
2022). This goes beyond the scope of this paper.

Quick Guide: Calculating, Reporting, and Interpreting
Omega Squared

When reporting omega squared, we advise the following:

1. Use Appendix B to find the appropriate formula for your
ANOVA design and the factor of interest. For each compo-
nent in the formula, retrieve the value from the ANOVA
table(s) output by the statistical software you are using.
Examples of using SPSS output are shown in Figures 1–5,
along with data and syntax in the online supplemental
materials. Use a tool such as Excel to perform the actual
calculation of the formula using the component values;
examples of this are also found in the online supplemental
materials.

2. Report omega squared with three decimals, as even a value
as small as .008 canmake a considerable difference in power
analysis, especially for smaller effects (Lakens, 2015). Do
not include a leading zero in front of the decimal (e.g.,
0.008), because that is never necessary for statistics that can-
not exceed a value of one (such as r, p, and omega squared).

3. It is possible to find a negative effect size for omega squared.
This happens when the within-group error variance is so
high that any treatment effects are either absent or impossi-
ble to detect (Keppel & Wickens, 2004). It should be noted
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that a negative value for omega squared does not indicate a
negative effect, but signifies the absence of effect. It could
be argued that when omega squared is negative, it should
be set to zero. However, for clarity we advise reporting
the actual value for omega squared, even if it is negative,
accompanied by an interpretation in which the absence of
effect is stated (Okada, 2017).

4. Always report the exact formula you used to calculate the
effect size, accompanied by a reference to the source of the
formula (e.g., cite this paper; Kroes & Finley, 2022). You
can conveniently do this in the beginning of your Results sec-
tion, or as a footnote.

5. Include a confidence interval for the effect size if possible
(i.e., for between-subjects designs).

6. Include the complete ANOVA table(s) in your paper,
Appendices, or your online supplemental materials, to enable
other researchers to calculate a different effect size when pre-
ferred. You may wish to reformat the tables output by SPSS
to be consistent with APA style. Note that for within-subjects
designs, SPSS outputs the subject factor (labeled “error”) in a
separate table called “Tests of Between-Subjects Effects” so
be sure to include those values.

When interpreting the effect size, some guidelines exist on what
constitutes a small, medium, and large effect (Kirk, 1996, p. 751).
However, evaluating the effect size in such a manner should be done
with much caution. Most importantly, these standardized classifica-
tions say little about the actual practical importance and practical sig-
nificance of an effect (Keppel &Wickens, 2004;Maxwell et al., 2018).
A small effect size could be extremely valuable if it, for instance,
describes the effect of a life-saving drug. A large effect size could indi-
cate that an effect is already commonly known and therefore not useful
to investigate (Keppel & Wickens, 2004). Additionally, effect sizes
vary across specific areas of research (Maxwell et al., 2018).What con-
stitutes a groundbreaking discovery in one field, maybe inconsequen-
tial in another. In most fields, it is actually unclear what the smallest
effect size of interest is (Lakens, 2022)

Conclusion and Discussion

Reporting measures of effect size has been a growing practice over
the past decades, with eta squared and partial eta squared being
reported most frequently for ANOVA designs (Alhija & Levy,
2009; Finley et al., 2017; Fritz et al., 2012; Kirk, 1996; Zhou &
Skidmore, 2017). Eta squared and partial eta squared are problematic
because they are positively biased and thus tend to overestimate the
population value (Albers & Lakens, 2018; Keppel & Wickens,
2004; Keselman, 1975; Lakens, 2015; Levine & Hullett, 2002;
Yigit & Mendes, 2018). Omega squared and partial omega squared
are less biased (Field, 2017; Keppel & Wickens, 2004; Lakens,
2013, 2015; Tabachnick & Fidell, 2007; Yigit & Mendes, 2018) but
are underused due to inconvenience, lack of guidance, and unfamiliar-
ity (Kirk, 1996; Zhou & Skidmore, 2017). There is a lack of clarity
about the varying formulas for different designs, especially for designs
including within-subjects factors (Keppel &Wickens, 2004; Maxwell
et al., 2018; Olejnik & Algina, 2000; Tabachnick & Fidell, 2007).
To help with this lack of clarity we have provided formulas that can

be used for between, within and split–plot ANOVA-designs with
fixed factors (for a quick overview, see Appendix B). We have pro-
vided a guide to calculate confidence intervals for between-subjects

designs, and we encourage researchers to investigate confidence inter-
vals for designs that include within-subject factors. Disagreement
exists whether variance due to systematic differences between subjects
should be partialled out in designs that include within-subjects factors
(Maxwell et al., 2018; Tabachnick & Fidell, 2007). We agree with
Maxwell et al. (2018) that it seems inadvisable to disregard variance
caused by subjects, and we have presented formulas that include these
differences. We argue that this offers an acceptable solution to the
problem of nonadditivity. Another problem is deciding whether fac-
tors in a model should be seen as intrinsic or extrinsic, and whether
standard or partial omega squared should be used. A solution could
be to present both (Cohen, 1973) or to calculate an alternative, like
generalized omega squared (Olejnik & Algina, 2003).

SPSS and other statistical software packages have a great influ-
ence on what effect sizes are being used (Fritz et al., 2012; Kirk,
1996; Levine & Hullett, 2002). Statistical software developers can
play a helpful role by including more options for omega squared,
especially for the fixed between-subjects designs, where there is
no controversy over the formulas. Furthermore, the software should
state the exact formulas being used. Since the APA started requiring
reporting effect size, the use of effect sizes in general has increased
considerably (Alhija & Levy, 2009; Finley et al., 2017; Peng et al.,
2013; Zhou & Skidmore, 2017). The APA could play a facilitating
role by offering more guidance about effect sizes, and by encourag-
ing publishing ANOVA tables. We recommend researchers to
always report the formulas used to calculate the reported effect
sizes, and if possible to share the ANOVA table(s). This provides
others the possibility to partial out specific factors, and it facilitates
power calculations and meta-analyses. Most importantly, this aids in
cumulative science, as it clarifies the methods used and offers
researchers opportunities to make replications and gain a deeper
understanding of investigated effects.
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Appendix A

Disambiguation Table

Table A1
Comparison of the Terms Used for ANOVA Components Across Research Literature

Concept Current paper D&S K&W M,D&K O&A

Number of levels of factor A, B, C a, b, c J, K, L a, b, c a, b, c J, K, L

One-way between-subjects design (A)
Factor A (variance due to treatment A) effect between A between or B effect
Error (variance within groups) error within S/A within or W error

Multifactor between-subjects design (A×B)
Factor A or B (variance due to treatment A or B) effect effect, A, or B A or B effect effect
Factor A×B (variance due to interaction A×B) effect effect or AB A×B effect effect
Error (variance within groups) error error S/AB W error

One-way within-subjects design (Ā× S)
Factor Ā (variance due to treatment Ā) effect effect A A effect
Factor Ā× S (variance due to random error and interaction Ā× S) effect× subject A× S A× S A× S error
Error (variance due to subjects) subject S S S subjects

Multifactor within-subjects design (Ā× B̄× S)
Factor Ā or B̄ (variance due to treatment Ā or B̄) effect effect A or B effect —

Factor Ā× B̄ (variance due to interaction Ā× B̄) effect effect or AB A×B effect —

Error due to Ā× S (variance due to random error and interaction Ā× S) effect× subject A× S A× S effect× S —

Error (variance due to subjects) subject S S S —

Split–plot design (A× B̄× S)
Factor A or B̄ (variance due to treatment A or B̄) effect effect A or B effect A or B
Factor A× B̄ (variance due to interaction A× B̄) effect effect or AB A×B effect AB
Error due to A (variance due to subjects within groups of A) subject/A S S/A S/A S/A
Error due to B̄× S (variance due to random error and interaction B̄× S) effect × subject/A B× S B× S/A B× S/A BS/A

Note. Components that are used in formulas for omega squared and/or in ANOVA tables. D&S=Dodd and Schultz (1973); K&W=Keppel and Wickens
(2004); M,D&K=Maxwell et al. (2018); O&A=Olejnik and Algina (2000). ANOVA= analysis of variance.

(Appendices continue)

KROES AND FINLEY20

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



Appendix B

Quick Reference for Omega Squared Formulas

Design Factor Standard omega squared v̂2 Partial omega squared v̂2
p

One-way between-subjects A
SSA − (dfA ×MSerror)

SStotal +MSerror

One-way within-subjects Ā
SSA − (dfA ×MSA×subject)

SStotal +MSsubject

Two-way between-subjects A
SSA − (dfA ×MSerror)

SStotal +MSerror

SSA − (dfA×MSerror)
SSA + (N − dfA)MSerror

B
SSB − (dfB ×MSerror)

SStotal +MSerror

SSB − (dfB ×MSerror)
SSB + (N − dfB)MSerror

AB
SSAB − (dfAB ×MSerror)

SStotal +MSerror

SSAB − (dfAB ×MSerror)
SSAB + (N − dfAB)MSerror

Two-way within-subjects Ā
SSA − (dfA ×MSA×subject)

SStotal +MSsubject

SSA − (dfA ×MSA×subject)
SSA + SSA×subject + SSsubject +MSsubject

B̄
SSB − (dfB ×MSB×subject)

SStotal +MSsubject

SSB − (dfB ×MSB×subject)
SSB + SSB×subject + SSsubject +MSsubject

ĀB̄
SSAB − (dfAB ×MSAB×subject)

SStotal +MSsubject

SSAB − (dfAB ×MSAB×subject)
SSAB + SSAB×subject + SSsubject +MSsubject

Two-way split–plot A
SSA − (dfA ×MSsubject/A)

SStotal +MSsubject/A

SSA − (dfA ×MSsubject/A)
SSA+ SSsubject/A +MSsubject/A

B̄
SSB − (dfB ×MSB×subject/A)

SStotal +MSsubject/A

SSB − (dfB ×MSB×subject/A)
SSB + SSB×subject/A + SSsubject/A +MSsubject/A

AB̄
SSAB − (dfAB ×MSB×subject/A)

SStotal +MSsubject/A

SSAB − (dfAB ×MSB×subject/A)
SSAB + SSAB×subject/A + SSsubject/A +MSsubject/A

Three-way between-subjects A
SSA − (dfA ×MSerror)

SStotal +MSerror

SSA − (dfA ×MSerror)
SSA + (N − dfA)MSerror

B
SSB − (dfB ×MSerror)

SStotal +MSerror

SSB − (dfB ×MSerror)
SSB + (N − dfB)MSerror

C
SSC − (dfC ×MSerror)

SStotal +MSerror

SSC − (dfC ×MSerror)
SSC + (N − dfC)MSerror

AB
SSAB − (dfAB ×MSerror)

SStotal +MSerror

SSAB − (dfAB ×MSerror)
SSAB + (N − dfAB)MSerror

AC
SSAC − (dfAC ×MSerror)

SStotal +MSerror

SSAC − (dfAC ×MSerror)
SSAC + (N − dfAC)MSerror

BC
SSBC − (dfBC ×MSerror)

SStotal +MSerror

SSBC − (dfBC ×MSerror)
SSBC + (N − dfBC)MSerror

ABC
SSABC − (dfABC ×MSerror)

SStotal +MSerror

SSABC − (dfABC ×MSerror)
SSABC + (N − dfABC)MSerror

(table continues)
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Design Factor Standard omega squared v̂2 Partial omega squared v̂2
p

Three-way within-subjects Ā
SSA − (dfA ×MSA×subject)

SStotal +MSsubject

SSA − (dfA ×MSA×subject)
SSA + SSA×subject + SSsubject +MSsubject

B̄ SSB − (dfB ×MSB×subject)
SStotal +MSsubject

SSB − (dfB ×MSB×subject)
SSB + SSB×subject + SSsubject +MSsubject

C̄
SSC − (dfC ×MSC×subject)

SStotal +MSsubject

SSC − (dfC ×MSC×subject)
SSC + SSC×subject + SSsubject +MSsubject

ĀB̄
SSAB − (dfAB ×MSAB×subject)

SStotal +MSsubject

SSAB − (dfAB ×MSAB×subject)
SSAB + SSAB×subject + SSsubject +MSsubject

ĀC̄
SSAC − (dfAC ×MSAC×subject)

SStotal +MSsubject

SSAC − (dfAC ×MSAC×subject)
SSAC + SSAC×subject + SSsubject +MSsubject

B̄C̄
SSBC − (dfBC ×MSBC×subject)

SStotal +MSsubject

SSBC − (dfBC ×MSBC×subject)
SSBC + SSBC×subject + SSsubject +MSsubject

ĀB̄C̄
SSABC − (dfABC ×MSABC×subject)

SStotal +MSsubject

SSABC − (dfABC ×MSABC×subject)
SSABC + SSABC×subject + SSsubject +MSsubject

Three-way split–plot (two between-subjects factors) A
SSA − (dfA ×MSsubject/AB)

SStotal +MSsubject/AB

SSA − (dfA ×MSsubject/AB)
SSA + SSsubject/AB +MSsubject/AB

B
SSB − (dfB ×MSsubject/AB)

SStotal +MSsubject/AB

SSB − (dfB ×MSsubject/AB)
SSB + SSsubject/AB +MSsubject/AB

C̄
SSC − (dfC ×MSC×subject/AB)

SStotal +MSsubject/AB

SSC − (dfC ×MSC×subject/AB)
SSC + SSC×subject/AB + SSsubject/AB +MSsubject/AB

AB
SSAB − (dfAB ×MSsubject/AB)

SStotal +MSsubject/AB

SSAB − (dfAB ×MSsubject/AB)
SSAB + SSsubject/AB +MSsubject/AB

AC̄
SSAC − (dfAC ×MSC×subject/AB)

SStotal +MSsubject/AB

SSAC − (dfAC ×MSC×subject/AB)
SSAC + SSC×subject/AB + SSsubject/AB +MSsubject/AB

BC̄
SSBC − (dfBC ×MSC×subject/AB)

SStotal +MSsubject/AB

SSBC − (dfBC ×MSC×subject/AB)
SSBC + SSC×subject/AB + SSsubject/AB +MSsubject/AB

ABC̄
SSABC − (dfABC ×MSsubject/AB)

SStotal +MSsubject/AB

SSABC − (dfABC ×MSC×subject/AB)
SSABC + SSC×subject/AB + SSsubject/AB +MSsubject/AB

Three-way split–plot (one between-subjects factor) A SSA − (dfA ×MSsubject/A)
SStotal +MSsubject/A

SSA − (dfA ×MSsubject/A)
SSA + SSsubject/A +MSsubject/A

B̄
SSB − (dfB ×MSB×subject/A)

SStotal +MSsubject/A

SSB − (dfB ×MSB×subject/A)
SSB + SSB×subject/A + SSsubject/A +MSsubject/A

C̄ SSC − (dfC ×MSC×subject/A)
SStotal +MSsubject/A

SSC − (dfC ×MSC×subject/A)
SSC + SSC×subject/A + SSsubject/A +MSsubject/A

AB̄
SSAB − (dfAB ×MSB×subject/A)

SStotal +MSsubject/A

SSAB − (dfAB ×MSB×subject/A)
SSAB + SSB×subject/A + SSsubject/A +MSsubject/A

AC̄
SSAC − (dfAC ×MSC×subject/A)

SStotal +MSsubject/A

SSAC − (dfAC ×MSC×subject/A)
SSAC + SSC×subject/A + SSsubject/A +MSsubject/A

B̄C̄
SSBC − (dfBC ×MSBC×subject/A)

SStotal +MSsubject/A

SSBC − (dfBC ×MSBC×subject/A)
SSBC + SSBC×subject/A + SSsubject/A +MSsubject/A

AB̄C̄
SSABC − (dfABC ×MSBC×subject/A)

SStotal +MSsubject/A

SSABC − (dfABC ×MSBC×subject/A)
SSABC + SSBC×subject/A + SSsubject/A +MSsubject/A

Note. Formulas for ANOVAs with only fixed factors. Within-subjects factors are indicated with a line on top of the letter (e.g., Ā). See Appendix A for
explanation of subscript terms. ANOVA= analysis of variance.
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