Omega Squared Reference, by Jason R. Finley

<table>
<thead>
<tr>
<th>ANOVA design</th>
<th>Omega squared (standard)</th>
<th>Partial Omega squared (from Maxwell & Delaney, 2004)</th>
<th>notes</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-way Between</td>
<td>(\frac{df_{\text{effect}}(MS_{\text{effect}} - MS_{\text{error}})}{SS_{\text{total}} + MS_{\text{error}}})</td>
<td>(N/A)</td>
<td>MS_{\text{error}}=MS_{\text{within}}</td>
<td>O&A p266</td>
</tr>
<tr>
<td>1-way Within</td>
<td>(\frac{df_{\text{effect}}(MS_{\text{effect}} - MS_{\text{effect}\times\text{subject}})}{SS_{\text{total}} + MS_{\text{subject}}})</td>
<td>(N/A??) (O&A table 17?)</td>
<td>MS_{\text{error}} = MS_{\text{effect}\times\text{subject}}</td>
<td>M&D p547</td>
</tr>
<tr>
<td>2-way Between</td>
<td>A</td>
<td>(\frac{df_A(MS_A - MS_{\text{error}})}{SS_{\text{total}} + MS_{\text{error}}})</td>
<td>(\frac{df_A(MS_A - MS_{\text{error}})}{SS_A + (N_{\text{total}} - df_A)MS_{\text{error}}})</td>
<td>MS_{\text{error}}=MS_{\text{within}}</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>(\frac{df_B(MS_B - MS_{\text{error}})}{SS_{\text{total}} + MS_{\text{error}}})</td>
<td>(\frac{df_B(MS_B - MS_{\text{error}})}{SS_B + (N_{\text{total}} - df_B)MS_{\text{error}}})</td>
<td>SS_{subject}</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>(\frac{df_{AB}(MS_{AB} - MS_{\text{error}})}{SS_{\text{total}} + MS_{\text{error}}})</td>
<td>(\frac{df_{AB}(MS_{AB} - MS_{\text{error}})}{SS_{AB} + (N_{\text{total}} - df_{AB})MS_{\text{error}}})</td>
<td>SS_{subject}</td>
</tr>
<tr>
<td>2-way Mixed<sup>f</sup></td>
<td>A (between)</td>
<td>(\frac{df_A (MS_A - MS_{subject/A})}{SS_{total} + MS_{subject/A}})</td>
<td>(\frac{df_A (MS_A - MS_{subject/A})}{SS_A + SS_{subject/A} + MS_{subject/A}})</td>
<td>Subjects are nested within A (i.e., each subject receives only one level of A)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>B (within)</td>
<td>(\frac{df_B (MS_B - MS_{B\times subject/A})}{SS_{total} + MS_{subject/A}})</td>
<td>(\frac{df_B (MS_B - MS_{B\times subject/A})}{SS_B + SS_{B\times subject/A} + SS_{subject/A} + MS_{subject/A}})</td>
<td>Note that the error term is different in the numerator for A vs B and AB.</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>(\frac{df_{AB} (MS_{AB} - MS_{B\times subject/A})}{SS_{total} + MS_{subject/A}})</td>
<td>(\frac{df_{AB} (MS_{AB} - MS_{B\times subject/A})}{SS_{AB} + SS_{B\times subject/A} + SS_{subject/A} + MS_{subject/A}})</td>
<td>AB counts as a within-subjects effect because at least one of its factors is within-Ss.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a COULD do if you wanted to look at omega squared for the factor and partial out subject effect, or look at subject effect and partial out factor effect. But probably shouldn’t do this, based on reasoning of M&D.

b “With one observation per cell there is no estimate of within cell variance and the interaction of subjects and measures is used as the error term.” O&A 2000

c In SPSS, use the “corrected total” row to get SSTotal, because it doesn’t include the intercept.

d In SPSS, SSsubject is given as the “Error” row in the “Tests of Between-Subjects Effects” table.

e Partial out all other effects except for main effect of subjects. So value is same as would get if had run a 1-way between-Ss design with this factor. O&A give different formula that partials out subjects effect, it uses the denominator: \(SS_{effect} + (N_{total} - df_{effect}) \times MS_{error} \)

f Also known as “split plot” design.

df = degrees freedom
SS = sum square
MS = mean square

\(N_{total} = \) total # of subjects in experiment.
\(SS_{total} = SS_{effect} + SS_{subject} + SS_{error} \) (aka SS_{effect\times subject})
All factors are assumed to be fixed (vs random). Subjects factor is, however, random. See O&A for formulas for designs with random effects. These formulas are to calculate ESTIMATED omega squared. \(\hat{\omega}^2 \) or \(\hat{\omega}_{\text{partial}}^2 \).

If we somehow magically knew the population values, then:

\[
\omega^2 = \frac{\sigma_i^2 - \sigma_{i|x}^2}{\sigma_i^2}
\]

alternate form of formula for 1-way between: \(\hat{\omega}^2 = \frac{SS_{\text{effect}} - df_{\text{effect}} MS_{\text{error}}}{SS_{\text{total}} + MS_{\text{error}}} \)

Omega squared is a measure of effect size (aka strength of association), used in ANOVA.

“Omega-squared, also called Hays' omega-squared or the "coefficient of determination", is the proportion of variance in the dependent variable accounted for by the independent variable, adjusted for bias [unlike eta-squared] and interpreted analogously to adjusted R-square. Adjusted effect size attempts to correct bias which may arise from small sample size, having a large number of variables, and/or estimating a small population effect size.” from: http://faculty.chass.ncsu.edu/garson/PA765/anova.htm

Partial omega squared is the variance in the DV accounted for by one particular IV, with the effects of the other IVs partialed out. This only applies in designs with more than one IV.
References: